Article ID Journal Published Year Pages File Type
8345270 Nitric Oxide 2014 8 Pages PDF
Abstract
The normoxic heart was very sensitive to filling pressure increases; the maximum SV = 1.08 ± 0.09 mL/kg body mass was obtained at 0.4 kPa. Acute hypoxia increased this sensitivity, SV reaching the maximum value (1.45 ± 0.12 mL/kg body mass) at 0.25 kPa. NOS inhibition by L-NMMA reduced the Frank-Starling response under normoxia, but was ineffective under acute hypoxia, where NO may come from nitrite reduction. In both conditions, sGC inhibition induced a reduction of the cardiac response to preload. Moreover, under acute hypoxia, NO scavenging significantly reduced the Frank-Starling response. The hypoxia-induced hemodynamic patterns were complemented by Western blotting analysis which revealed increased expressions of NOS and hypoxia inducible factor α(HIF-1α). In conclusion, we demonstrated that intracardiac NO/NOS enhances goldfish heart performance, remarkably expanding its hypoxic tolerance.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,