Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8347774 | Peptides | 2016 | 8 Pages |
Abstract
Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10 nM) incubation for 24 h. GLP-1 (1 and 10 nM) and control cells had similar action potential durations. However, GLP-1 at 10 nM significantly increased calcium transients and sarcoplasmic reticular Ca2+ contents. Compared to the control, GLP-1 (10 nM)-treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca2+-ATPase and the sodium-calcium exchanger. Moreover, exendin (9-39) amide (a GLP-1 receptor antagonist, 10 nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Jen-Hung Huang, Yao-Chang Chen, Ting-I Lee, Yu-Hsun Kao, Tze-Fan Chazo, Shih-Ann Chen, Yi-Jen Chen,