Article ID Journal Published Year Pages File Type
8348354 Peptides 2014 10 Pages PDF
Abstract
Various studies have investigated the role of central opioid peptides in feeding behavior; however, only a few have addressed the participation of opioids in the control of salt appetite. The present study investigated the effect of intracerebroventricular injections of the δ-opioid antagonist, naltrindole (5, 10 and 20 nmol/rat) and the agonist, deltorphin II (2.5, 5, 10 and 20 nmol/rat) on salt intake. Two protocols for inducing salt intake were used: sodium-depletion and the central injection of angiotensin II. In addition, the effect of a central δ-opioid receptor blockade on locomotor activity, on palatable solution intake (0.1% saccharin) and on blood pressure was also studied. The blockade of central δ-opioid receptors inhibits salt intake in sodium-depleted rats, while the pharmacological stimulation of these receptors increases salt intake in sodium-replete animals. Furthermore, the blockade of central δ-opioid receptors inhibits salt intake induced by central angiotensinergic stimulation. These data suggest that during sodium-depletion activation of the δ-opioid receptors regulates salt appetite to correct the sodium imbalance and it is possible that an interaction between opioidergic and angiotensinergic brain system participates in this control. Under normonatremic conditions, δ-opioid receptors may be necessary to modulate sodium intake, a response that could be mediated by angiotensin II. The decrease in salt intake following central δ-opioid receptors blockade does not appear to be due to a general inhibition of locomotor activity, changes in palatability or in blood pressure.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,