Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8348482 | Peptides | 2014 | 6 Pages |
Abstract
The emergence of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a serious threat to public health and necessitates the discovery of new types of antimicrobial agents. Among the 18 clinical isolates of N. gonorrhoeae with susceptible to spectinomycin, ceftriaxone and cefixime, 14 isolates were resistance to penicillin, tetracycline and ciprofloxacin, while 2 isolates were susceptible to tetracycline and another was penicillin intermediate isolate. Significant differences between laboratory strain and multidrug resistant strains were revealed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling and bioinformatics examination using the MALDI BioTyper software. However, Maldi Biotyper was not successfully separated ciprofloxacin-penicillin resistance and ciprofloxacin-tetracycline resistance from ciprofloxacin-penicillin-tetracycline resistant N. gonorrhoeae isolates. BmKn2 is a basic, alpha-helical peptide with no disulfide-bridge venom peptides that was first isolated from Buthus martensii Kasch. A panel of BmKn2 scorpion venom peptide and its derivatives of varying length and characteristics were synthesized chemically and evaluated for their ability to inhibit the growth of clinical N. gonorrhoeae isolates. Synthetic BmKn2 displayed potent activity against 18 clinical isolates of N. gonorrhoeae with MIC50 values of 6.9-27.6 μM. BmKn2 exerted its antibacterial activity via a bactericidal mechanism. Cyclic BmKn1 did not show antigonococcal activity. Decreasing the cationicity and helix percentage at the C-terminus of BmKn2 reduced the potency against N. gonorrhoeae. Taken together, the BmKn1 peptide can be developed as a topical therapeutic agent for treating multidrug-resistant strains of N. gonorrhoeae infections.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Teerakul Arpornsuwan, Brisana Buasakul, Janthima Jaresitthikunchai, Sittiruk Roytrakul,