Article ID Journal Published Year Pages File Type
8353 Biomaterials 2010 10 Pages PDF
Abstract

Dendritic cells (DCs) are key players in eliciting immunity against antigens, therefore making them the focus of many investigations on immune responses in infections, cancer and autoimmune diseases. Nanosized materials have just recently been investigated for their use as carriers of antigens and as labeling agents for DCs. For this later use nanoparticles should be non-toxic and should most importantly not alter the physiological functions of DCs. Here we demonstrate that by the use of polymeric fluorescent nanoparticles as synthesized by the miniemulsion process immature DCs (iDCs) can be efficiently labeled intracellularly. Amino functionalized nanoparticles are more effective than carboxy functionalized ones. Even after 8 days 95% of DCs have retained nanoparticles with a fluorescence intensity of 67% compared to day 1. Nanoparticle labeling does not influence expression of cell surface molecules on mature DCs (mDCs) like HLA-DR, CD80/83/86, CCR7, CD11c nor does it influence the immunostimulatory capacity of mDCs. This procedure does also not impair the capability of DCs for uptake, processing and presentation of viral antigens as demonstrated by interferon-γ ELISPOT on T cells stimulated with viral antigens presented by DCs. Therefore polymeric nanoparticles are a promising tool to study migration and homing of DCs in animal studies.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,