Article ID Journal Published Year Pages File Type
836976 Nonlinear Analysis: Real World Applications 2016 22 Pages PDF
Abstract

Non-convex functionals have shown sharper results in signal reconstruction as compared to convex ones, although the existence of a minimum has not been established in general. This paper addresses the study of a general class of either convex or non-convex functionals for denoising signals which combines two general terms for fitting and smoothing purposes, respectively. The first one measures how close a signal is to the original noisy signal. The second term aims at removing noise while preserving some expected characteristics in the true signal such as edges and fine details. A theoretical proof of the existence of a minimum for functionals of this class is presented. The main merit of this result is to show the existence of minimizer for a large family of non-convex functionals.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,