Article ID Journal Published Year Pages File Type
837165 Nonlinear Analysis: Real World Applications 2015 19 Pages PDF
Abstract

A unilateral contact problem between elastic bodies at small strains glued by a brittle adhesive is addressed in the quasistatic rate-independent setting. The delamination process is modeled as governed by stresses rather than by energies. This leads to a specific scaling of an approximating elastic adhesive contact problem, discretized by a semi-implicit scheme and regularized by a BV-type gradient term. An analytical zero-dimensional example motivates the model and a specific local-solution concept. Two-dimensional numerical simulations performed on an engineering benchmark problem of debonding a fiber in an elastic matrix further illustrate the validity of the model, convergence, and algorithmical efficiency even for very rigid adhesives with high elastic moduli.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,