Article ID Journal Published Year Pages File Type
838530 Nonlinear Analysis: Real World Applications 2009 17 Pages PDF
Abstract

In this paper, a nonlinear mathematical model is proposed and analyzed to study the survival of a resource-dependent population. It is assumed that this population and its resource are affected simultaneously by a toxicant (pollutant) emitted into the environment from external sources as well as formed by precursors of this population. It is shown that as the cumulative rates of emission and formation of the toxicant into the environment increase, the densities of population and its resource settle down to lower equilibria than their initial carrying capacities, and their magnitudes decrease as rates of emission and formation of the toxicant increase. On comparing different cases, it is noted that when population is not affected directly by the toxicant but only its resource is affected, the possibility of its survival is greater than the case when both are affected simultaneously. But for large emission rate of toxicant, the affected resource may be driven to extinction under certain conditions and the population which wholly depends on it may not survive for long even if it is not affected directly by the toxicant.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,