Article ID Journal Published Year Pages File Type
840323 Nonlinear Analysis: Theory, Methods & Applications 2012 21 Pages PDF
Abstract

This paper is devoted to proving the existence and uniqueness of solutions to Cauchy type problems for fractional differential equations with composite fractional derivative operator on a finite interval of the real axis in spaces of summable functions. An approach based on the equivalence of the nonlinear Cauchy type problem to a nonlinear Volterra integral equation of the second kind and applying a variant of the Banach’s fixed point theorem to prove uniqueness and existence of the solution is presented. The Cauchy type problems for integro-differential equations of Volterra type with composite fractional derivative operator, which contain the generalized Mittag-Leffler function in the kernel, are considered. Using the method of successive approximation, and the Laplace transform method, explicit solutions of the open problem proposed by Srivastava and Tomovski (2009) [11] are established in terms of the multinomial Mittag-Leffler function.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
,