Article ID Journal Published Year Pages File Type
84050 Computers and Electronics in Agriculture 2016 6 Pages PDF
Abstract

•We put an automated system to classify the wheat grains with a high accuracy rate.•We used the performance of DSIFT evaluated by SVM classifier.•The proposed method provides an overall 88.33% accuracy rate.

The demand for identification of cereal products with computer vision based applications has grown significantly over the last decade due to economic developments and reducing the labor force. With this regard, we have proposed an automated system that is capable to classify the wheat grains with the high accuracy rate. For this purpose, the performance of Dense Scale Invariant Features (DSIFT) is evaluated by concentrating on Support Vector Machine (SVM) classifier. First of all, the concept of k-means clustering is operated on DSIFT features and then images are represented with histograms of features by constituting the Bag of Words (BoW) of the visual words. By conducting an experimental study on a special dataset, we can make a commitment that the proposed method provides the satisfactory results by achieving an overall 88.33% accuracy rate.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , , , , ,