Article ID Journal Published Year Pages File Type
841927 Nonlinear Analysis: Theory, Methods & Applications 2010 12 Pages PDF
Abstract

This paper is concerned with two-fluid time-dependent non-isentropic Euler–Maxwell equations in a torus for plasmas or semiconductors. By using the method of formal asymptotic expansions, we analyze the non-relativistic limit for periodic problems with the prepared initial data. It is shown that the small parameter problems have unique solutions existing in the finite time interval where the corresponding limit problems (compressible Euler–Poisson equations) have smooth solutions. Moreover, the formal limit is rigorously justified by an iterative scheme and an analysis of asymptotic expansions up to any order.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,