Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8421024 | Journal of Microbiological Methods | 2016 | 6 Pages |
Abstract
Streptococcus gordonii, a commensal bacterium of the human oral cavity, is a potential live vaccine vector. In this study, we have developed a system that delivers a vaccine antigen gene onto the chromosome of S. gordonii. The system consisted of a recipient strain, that is a thymidine auxotroph constructed by deletion of a portion of thyA gene, and a linear gene delivery construct, composed of the functional thyA gene, the vaccine antigen gene, and a DNA fragment immediately downstream of thyA. The construct is assembled by a ligation and polymerase chain reaction strategy. Upon introduction into the thyA mutant, the vaccine antigen gene integrated into the chromosome via a double crossing-over event. Using the above strategy, a test vaccine antigen gene coding for a fusion protein composed of the Bordetella pertussis filamentous hemagglutinin type I domain and the single chain antibody against complement receptor 1 was successfully delivered to S. gordonii. The resulting S. gordonii expressed the fusion protein and the delivered gene was stable in the bacterium in vitro and in a mouse colonization experiment. Mice colonized by the fusion protein-expressing S. gordonii developed antibodies that recognized the native filamentous hemagglutinin protein suggesting that an immune response was elicited.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biotechnology
Authors
Song F. Lee, Maram Hulbah, Scott A. Halperin,