Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8421871 | Journal of Microbiological Methods | 2014 | 6 Pages |
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic pathogen, which also exhibits potential of wide applications in industry, environment and agriculture. An efficient transformation method for S. maltophilia would be convenient to its genetic studies. In this report, we focused on developing an efficient transformation protocol for S. maltophilia. Gene transfer by three different methods (chemical transformation, conjugation and electroporation) indicated that electroporation was the most efficient method to transform S. maltophilia S21. Then, the entire electroporation process from competent-cell preparation to post-pulse incubation was optimized to get higher efficiencies. Utilizing competent cells prepared at optical density (600 nm) of 1.0, the maximal transformation efficiency of S. maltophilia S21 reached 1.53 Ã 108 transformants/μg of pBBR1MCS DNA at a field strength of 18 kV/cm, a time constant of 4.8 ms (200 Ω), a DNA amount of 100 ng and a cell concentration of 2.4 Ã 108 CFU/ml after 3 h incubation. Moreover, we successfully transformed the other four isolates of S. maltophilia using this protocol. To date, this is the first report about electroporation of S. maltophilia and it will facilitate the further study of this species.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biotechnology
Authors
Xing Ye, Hongling Dong, Yu-Ping Huang,