Article ID Journal Published Year Pages File Type
84717 Computers and Electronics in Agriculture 2012 9 Pages PDF
Abstract

Lettuce is one of the most widely consumed leaf vegetables. In hydroponic the growth depends upon the composition of nutrient solution. Due to its nutrient absorption, the conductivity and pH suffer continuous variations. This paper describes the development of a system completely managed by a lab-made software. It monitors the conductivity and pH throughout 24 h during the whole cycle of production. Also, allows adjust automatically any variation, through solenoid valves which dispense solutions of acid/base or nutrient. The efficiency of the proposed instrumentation was evaluated by simultaneously cultivation of same kind of lettuce (Vanda) in two different ways, hydroponics in greenhouse controlled with the developed devices, and grown conventionally in soil, adopted as referential. Agronomic and chemical parameters of commercial interest were analyzed for both crop, attesting the precocity in harvest (64 against 71 days) with reduced labor, better control and higher productivity, especially in fresh and dry matter of aerial parts, presenting 267.56 and 13.33 g plant−1 respectively, using the developed system. The data sequence regarding the concentration of nutrients for the automated hydroponic system was similar to those obtained by the mentioned researchers, as follows: K > N > Ca > P > Mg > S > Fe > Zn > Mn > Cu. This similarity highlights the efficiency of controlling the parameters of conductivity and pH in the instrumental system applied to hydroponics, offering the producer an effective and viable alternative in the production of lettuce.

► The nutrient solution passes through the temperature sensor, conductivity cell and the pH electrode. ► Their data are acquired by software ControlHidro. ► Valves basic solutions, acid or nutrient are activated according to preset programming.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,