Article ID Journal Published Year Pages File Type
847882 Optik - International Journal for Light and Electron Optics 2014 4 Pages PDF
Abstract

Quantum networks are distributed many-body quantum systems with tailored topology and controlled information exchange. We present two schemes to generate remote entanglement, in atomic external degrees of freedom and between cavities. In the first scheme, we entangle two atoms with their cavities in momentum space through Bragg diffraction. Thereafter, in order to trace out the cavities, we let resonantly interact an auxiliary atom with each cavity. In the last, we perform quantum measurement on two auxiliary atoms and get remote entangled state in atomic external degrees of freedom. In the second scheme, we have a three cavities system. The other two cavities, A and B, are entangled with indistinguishable modes of cavity, C. Performing quantum measurement on third cavity, C, we disentangle it from the system and the cavities, A and B, become entangled.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,