Article ID Journal Published Year Pages File Type
848908 Optik - International Journal for Light and Electron Optics 2014 6 Pages PDF
Abstract

The wavelet transform (WT) and linear canonical transform (LCT) have been shown to be powerful tool for optics and signal processing. In this paper, firstly, we introduce a novel time-frequency transformation tool coined the generalized wavelet transform (GWT), based on the idea of the LCT and WT. Then, we derive some fundamental results of this transform, including its basis properties, inner product theorem and convolution theorem, inverse formula and admissibility condition. Further, we also discuss the time-fractional-frequency resolution of the GWT. The GWT is capable of representing signals in the time-fractional-frequency plane. Last, some potential applications of the GWT are also presented to show the advantage of the theory. The GWT can circumvent the limitations of the WT and the LCT.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,