Article ID Journal Published Year Pages File Type
849111 Optik - International Journal for Light and Electron Optics 2011 5 Pages PDF
Abstract

Modulation instability of an intense right-hand elliptically polarized laser beam propagating through magnetized plasma is investigated by a new method. The nonlinear dispersion relation, in which the relativistic and ponderomotive nonlinearities are taken into account, is obtained for the laser radiation in magnetized plasma by the Lorentz transformation. The Karpman equation is firstly generalized to the case of three dimensions with three field components. When the nonlinear frequency shift of the electromagnetic field in plasma is involved, the nonlinear evolution equation for the slowly varying envelope of the laser field is obtained. Thus, modulation instability of the intense laser beam in magnetized plasma is studied and the temporal growth rate of the instability is derived. The analysis shows that the peak growth rate of self-modulation instability is increased due to the axial magnetization of plasma. It is also shown that the growth rate of modulation instability is increased significantly near the critical surface in a laser–plasma.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,