Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
849582 | Optik - International Journal for Light and Electron Optics | 2014 | 5 Pages |
X-ray pulse profile and time of arrival (TOA) are the two important physical quantities for pulsar navigation. With the standard and integrated X-ray pulse profiles modeled, X-ray pulse profile construction is studied and TOA is solved using compressed sensing (CS) technology. The observation matrix and waveform complete dictionary are mainly examined. A column vector-based matching pursuit algorithm is presented. The feasibility of obtaining X-ray pulse profile construction by compressed sensing technology is verified by numerical simulation. Compared with the X-ray pulse profile construction method based on epoch folding, the proposed method exhibits improved real-time performance, and its detection time for integrated X-ray pulse profile could be reduced by one order of magnitude. This proposed method can also solve for TOA solution and construct the X-ray pulse profile simultaneously, which is essential to improve pulsar navigation efficiency.