Article ID Journal Published Year Pages File Type
84983 Computers and Electronics in Agriculture 2010 7 Pages PDF
Abstract

A dynamic fluorescence image index system capable of non-destructive assessment of water stress in cabbage seedlings was developed. The quenching curves of chlorophyll fluorescence characteristic to the plant's water stress status under reduced excitation energy were acquired via a multispectral imaging system. The dynamic fluorescence index (DFI), a fluorescence index derived from quantitative modeling of the quenching curves in this study, was found superior to conventional indices such as the fluorescence decrease ratio (Rfd) in evaluating water stress status in cabbage seedlings, with respect to due mainly to its significantly reduced measuring time and enhanced precision of the chlorophyll fluorescence responses. The best results of the quantitative model to predict water stress status of seedlings using the dynamic fluorescence index were r = 0.944 and SEE = 0.286 MPa using the 720 nm channel. The blue (460 nm) LED-excited fluorescence multispectral imaging system (FMSIS) coupled with DFI provides a powerful research tool for plant physiology studies as well as for improving greenhouse and agriculture management practices where quantitative assessment of water potential in leafy plants is critical.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , , , , ,