Article ID Journal Published Year Pages File Type
85082 Computers and Electronics in Agriculture 2008 14 Pages PDF
Abstract

Nitrogen (N) losses from agriculture often contribute to reduced air, groundwater, and surface water quality. The minimization of these N losses is desirable from an environmental standpoint, and a recent interest in discounted reductions of agricultural N losses that might apply to a project downstream from an agricultural area has resulted in the concept of N credits and associated N trading. To help quantify management-induced reductions in N losses at the farm field level (essential components of a Nitrogen Trading Tool), we defined a Nitrogen Trading Tool difference in reactive N losses (NTT-DNLreac) as the comparison between a baseline and new management scenarios. We used a newly released Windows XP version of the Nitrogen Losses and Environmental Assessment Package (NLEAP) simulation model with Geographic Information System (GIS) capabilities (NLEAP-GIS) to assess no-till systems from a humid North Atlantic US site, manure management from a Midwestern US site, and irrigated cropland from an arid Western US site. The new NTT-DNLreac can be used to identify the best scenario that shows the greatest potential to maximize field-level savings in reactive N for environmental conservation and potential N credits to trade. A positive NTT-DNLreac means that the new N management practice increases the savings in reactive N with potential to trade these savings as N credits. A negative number means that there is no savings in reactive N and no N available to trade. The new NLEAP-GIS can be used to quickly identify the best scenario that shows the greatest potential to maximize field-level savings in reactive N for environmental conservation and earning N credits for trade.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,