Article ID Journal Published Year Pages File Type
85134 Computers and Electronics in Agriculture 2008 13 Pages PDF
Abstract

The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical multi-linear regression model, based on odd and branched chain milk fatty acids. Data were collected from 10 experiments with rumen fistulated dairy cows, resulting in a dataset of 138 observations. Feature selection was based on correlation and principal component analysis, and background physiological knowledge. Different ANN architectures and training algorithms were assessed. The evaluation of the model performance, based on the test dataset, showed a root mean square prediction error, expressed relative to the observed mean, of 2.65%, 7.67% and 7.61% of the observed mean for acetate, propionate and butyrate, respectively. Compared to a multi-linear regression model, the ANN revealed not to perform significantly better. However, the results confirm that milk fatty acids have great potential to predict molar proportions of individual volatile fatty acids in the rumen.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,