Article ID Journal Published Year Pages File Type
8513652 Journal of Pharmaceutical Sciences 2017 22 Pages PDF
Abstract
N-Acetyl-tryptophan (NAT) is used as a stabilizer for preparations of human serum albumin and has more recently been demonstrated to provide oxidative protection for labile Trp residues in monoclonal antibodies. As a component in the formulations of protein therapeutics, NAT is sacrificially degraded; therefore, understanding the identity and quantity of NAT degradants potentially formed in these drug products is essential to understanding the potential patient impact of this additive. Here, we report a simple reversed-phase chromatography approach that allows systematic investigation of NAT degradation in relevant formulations under stressed conditions. Screening a panel of NAT-containing samples following a variety of forced stress conditions led to a range of NAT degradation from minimal (3%) to significant (83%). NAT degradants were observed to be largely conserved between oxidative and thermal stress conditions. Online mass spectrometry and standard compound synthesis allowed for identification of the major degradants in the stressed sample panel. NAT degradation was minimal under recommended storage conditions and in relevant thermal stress conditions for a representative protein therapeutic drug product, suggesting that NAT is stable under normal manufacturing, storage, and handling conditions. This work supports the use of NAT as an antioxidant in liquid drug product formulations.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , ,