Article ID Journal Published Year Pages File Type
8513786 Journal of Pharmaceutical Sciences 2017 38 Pages PDF
Abstract
The dialysis method is classically used for drug separation before analysis, but does not provide direct and real-time drug quantification and has limitations affecting the dialysis rate. In this study, a phosphorus nuclear magnetic resonance (31P-qNMR) method is developed for the real-time quantification of therapeutic molecules in vitro. The release kinetics of model drug, tenofovir (anti-HIV microbicide), was analyzed in vaginal fluid simulant (VFS), seminal fluid simulant (SFS), and human plasma (HP) from chitosan nanofibers (size ∼100-200 nm) using the NMR (direct) method and compared with dialysis/UV-Vis (indirect) method. The assay was linear in VFS/SFS (0.20-5.0 mM), HP (0.30-5.0 mM of drug concentration range) and specific no drug 31P-qNMR chemical shift [∼15 ppm] interference with formulation/media components. Limit of detection values were 0.075/0.10/0.20 mM, whereas limit of quantification values were 0.20/0.20/0.30 mM in VFS/SFS/HP, respectively. The method was robust, precise (%RSE <2%), and accurate (%mean recovery 90%-110%). After 12 h, ∼77%/72%/70% wt/wt of tenofovir release was observed with direct, compared to ∼47%/52%/52% wt/wt by indirect method in VFS/SFS/HP, respectively. Approximately 20% decrease in %drug release observed with dialysis method suggested an interference with drug transport process due to the dialysis membrane and the Gibbs-Donnan effect. Overall, 31P-qNMR provides more accurate, real-time, and direct drug quantification for effective in vitro-in vivo correlation.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , ,