Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8514678 | Journal of Pharmaceutical Sciences | 2017 | 8 Pages |
Abstract
Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% “scratch closure” after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Siew Yong Teo, Mei Yeng Yew, Siang Yin Lee, Michael J. Rathbone, Seng Neon Gan, Allan G.A. Coombes,