Article ID Journal Published Year Pages File Type
872937 Journal of Biomechanics 2009 5 Pages PDF
Abstract

Fung elasticity refers to the hyperelasticity constitutive relation proposed by Fung and co-workers for describing the pseudo-elastic behavior of biological soft tissues undergoing finite deformation. A frame-invariant formulation of Fung elasticity is provided for material symmetries ranging from orthotropy to isotropy, which uses Lamé-like material constants. In the orthotropic case, three orthonormal vectors are used to define mutually orthogonal planes of symmetry and associated texture tensors. The strain energy density is then formulated as an isotropic function of the Lagrangian strain and texture tensors. The cases of isotropy and transverse isotropy are derived from the orthotropic case. Formulations are provided for both material and spatial frames. These formulations are suitable for implementation into finite element codes. It is also shown that the strain energy function can be naturally uncoupled into a dilatational and a distortional part, to facilitate the computational implementation of incompressibility.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, ,