Article ID Journal Published Year Pages File Type
8733323 The Journal of Molecular Diagnostics 2018 13 Pages PDF
Abstract
In PCR assays designed to detect rare somatic mutations, SuperSelective primers, by virtue of their short 3′-foot sequences, selectively initiate synthesis on mutant DNA target fragments, while suppressing the synthesis of related wild-type fragments, and the resulting threshold cycle reflects the quantity of mutant targets present. However, when there are ≤10 mutant target fragments in a sample, the threshold cycle that is observed occurs so late that it can be confused with the threshold cycle that arises from samples that contain only abundant related wild-type fragments. We report here that the inclusion of the selectivity enhancing agents tetramethylammonium chloride or bis-tetramethylammonium oxalate in SuperSelective PCR assays substantially suppresses the amplification of related wild-type fragments. As a result of this selective suppression, assay sensitivity is increased to such an extent that multiplex PCR assays can be performed in which it is highly unlikely that there will be a false-positive or false-negative result. This advance provides a foundation for the development of rapid, low-cost, multiplex PCR assays for noninvasively assessing the presence of relevant mutations in cancer patients, thereby enabling individually appropriate therapy.
Related Topics
Health Sciences Medicine and Dentistry Health Informatics
Authors
, , , ,