Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8733339 | The Journal of Molecular Diagnostics | 2018 | 53 Pages |
Abstract
Theranostic assays are based on single-gene testing, but the ability of next-generation sequencing (NGS) to interrogate numerous genetic alterations will progressively replace single-gene assays. Although NGS was evaluated to screen for theranostic mutations, its usefulness in clinical practice on large series of samples remains to be demonstrated. NGS performance was assessed following guidelines. TaqMan probes and NGS were compared for their ability to detect EGFR and KRAS mutations, and NGS mutation profiles were analyzed on a large series of non-small-cell lung cancers (n = 1343). The R2 correlation between expected and measured allelic ratio, using commercial samples, was >0.96. Mutation detection threshold was 2% for 10 ng of DNA input. κ Scores for TaqMan versus NGS were 0.99 (95% CI, 0.97-1.00) for EGFR and 0.98 (95% CI, 0.97-1.00) for KRAS after exclusion of rare EGFR (n = 40) and KRAS (n = 60) mutations. NGS identified 693 and 292 mutations in validated and potential oncogenic drivers, respectively. Significant associations were found between EGFR and PI3KCA or CTNNB1 and between KRAS and STK11. Potential oncogenic driver mutations or gene amplifications were more frequent in validated oncogenic driver nonmutated samples. This work is a proof of concept that targeted NGS is accessible in routine screening, including large screening, at reasonable cost. Clinical data should be collected and implemented in specific databases to make molecular data meaningful for direct patients' benefit.
Related Topics
Health Sciences
Medicine and Dentistry
Health Informatics
Authors
Antoine Legras, Marc Barritault, Anne Tallet, Elizabeth Fabre, Alice Guyard, Bastien Rance, William Digan, Nicolas Pecuchet, Etienne Giroux-Leprieur, Catherine Julie, Stéphane Jouveshomme, Véronique Duchatelle, Véronique Giraudet, Laure Gibault,