Article ID Journal Published Year Pages File Type
8745042 Current Opinion in Microbiology 2018 8 Pages PDF
Abstract
With the vast majority of the microbial world still considered unculturable or undiscovered, microbiologists not only require more fundamental insights concerning microbial growth requirements but also need to implement miniaturized, versatile and high-throughput technologies to upscale current microbial isolation strategies. In this respect, single-cell-based approaches are increasingly finding their way to the microbiology lab. A number of recent studies have demonstrated that analysis and separation of free microbial cells by flow-based sorting as well as physical stochastic confinement of individual cells in microenvironment compartments can facilitate the isolation of previously uncultured species and the discovery of novel microbial taxa. Still, while most of these methods give immediate access to downstream whole genome sequencing, upscaling to higher cell densities as required for metabolic readouts and preservation purposes can remain challenging. Provided that these and other technological challenges are addressed in future innovation rounds, integration of single-cell tools in commercially available benchtop instruments and service platforms is expected to trigger more targeted explorations in the microbial dark matter at a depth comparable to metagenomics.
Related Topics
Life Sciences Immunology and Microbiology Microbiology
Authors
, ,