Article ID Journal Published Year Pages File Type
8749990 Microbial Pathogenesis 2017 30 Pages PDF
Abstract
β-1,3-glucan plays a role in non-albicans Candida species biofilm formation and survival of biofilm Candida to stresses. In this study, we evaluated the antibiofilm activity of β-1,3-glucanase, which can degrade poly-β(1 → 3)-glucose of non-albicans Candida species biofilms, on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis and Candida krusei. Biofilm by all tested species in microplate were dispersed more than 60%. β-1,3-glucanase also detached mixed species biofilm in microplate and on medical material surface. β-1,3-glucanase had no effect on Candida planktonic growth as well as adhesion. However, further biofilm formation was inhibited with β-1,3-glucanase added at 24 h after biofilm initiation. β-1,3-glucanase markedly enhanced the antifungal susceptibility of amphotericin B. The examination using confocal laser scanning microscopy and scanning electron microscope confirmed the antibiofilm activity of β-1,3-glucanase. Our findings demonstrate that β-1,3-glucanase may be useful as an antibiofilm agent.
Related Topics
Life Sciences Immunology and Microbiology Microbiology
Authors
, , , , ,