Article ID Journal Published Year Pages File Type
8757640 Contemporary Clinical Trials 2017 8 Pages PDF
Abstract
This paper addresses dose finding in clinical trials where individuals exhibit biologic characteristics that alter the toxicity risks of the individuals. In these situations, instead of determining a dose that works for every patient, the trial aims to identify a dosing algorithm that prescribes dose according to the patient's biomarker or pharmacokinetic expression. Specifically, we aim to dose patients around a pre-specified level of area under the curve of irinotecan concentration using the patients' baseline phenotypes that predict drug clearance. We propose least squares recursion procedures to estimate the dosing algorithm sequentially with an aim to treat patients in the trial around the true unknown dosing algorithm, and introduce a novel application of an eigenvalue theory that guarantees convergence to the true dosing algorithms. Our simulation study demonstrates that using an eigenvalue constraint improves the efficiency of the recursion by as large as 40%, while concentrating in-trial patient allocation around the true dosing algorithm. We also provide practical guidance on design calibration, and design future irinotecan studies based on data from our first trial.
Related Topics
Health Sciences Medicine and Dentistry Medicine and Dentistry (General)
Authors
, ,