Article ID Journal Published Year Pages File Type
876902 Medical Engineering & Physics 2009 7 Pages PDF
Abstract

Regularization is an effective method for the solution of ill-posed ECG inverse problems, such as computing epicardial potentials from body surface potentials. The aim of this work was to explore more robust regularization-based solutions through the application of subspace preconditioned LSQR (SP-LSQR) to the study of model-based ECG inverse problems. Here, we presented three different subspace splitting methods, i.e., SVD, wavelet transform and cosine transform schemes, to the design of the preconditioners for ill-posed problems, and to evaluate the performance of algorithms using a realistic heart-torso model simulation protocol. The results demonstrated that when compared with the LSQR, LSQR-Tik and Tik-LSQR method, the SP-LSQR produced higher efficiency and reconstructed more accurate epcicardial potential distributions. Amongst the three applied subspace splitting schemes, the SVD-based preconditioner yielded the best convergence rate and outperformed the other two in seeking the inverse solutions. Moreover, when optimized by the genetic algorithms (GA), the performances of SP-LSQR method were enhanced. The results from this investigation suggested that the SP-LSQR was a useful regularization technique for cardiac inverse problems.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , , ,