Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8791926 | Experimental Eye Research | 2018 | 24 Pages |
Abstract
Here, we described the development of a novel rabbit model of persistent retinal neovascularization (PRNV). Retinal Müller glial are essential for maintaining the integrity of the blood-retinal barrier. Intravitreal injection of DL-alpha-aminoadipic acid (DL-AAA), a selective retinal glial (Müller) cell toxin, results in persistent vascular leakage for up to 48 weeks. We demonstrated that VEGF concentrations were significantly increased in vitreous suggesting VEGF plays a significant role in mediating the leakage observed. Intravitreal administration of anti-VEGF drugs (e.g. bevacizumab, ranibizumab and aflibercept) suppresses vascular leakage for 8-10 weeks, before recurrence of leakage to pre-treatment levels. All three anti-VEGF drugs are very effective in re-ducing angiographic leakage in PRNV model, and aflibercept demonstrated a longer duration of action compared with the others, reminiscent of what is observed with these drugs in human in the clinical setting. Therefore, this model provides a unique tool to evaluate novel anti-VEGF formulations and therapies with respect to their duration of action in comparison to the currently used drugs.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology and Microbiology (General)
Authors
Yong Li, Joanna Marie Busoy, Ben Alfyan Achirn Zaman, Queenie Shu Woon Tan, Gavin Siew Wei Tan, Veluchamy Amutha Barathi, Ning Cheung, Jay Ji-Ye Wei, Walter Hunziker, Wanjin Hong, Tien Yin Wong, Chui Ming Gemmy Cheung,