Article ID Journal Published Year Pages File Type
8866608 Remote Sensing of Environment 2018 12 Pages PDF
Abstract
Experimental evidence points to an intimate link between soil reflectance, R, and particle/aggregate diameter, D. Based on this strong correlation, various statistical methods for remote and proximal sensing of soil texture and hydraulic properties have been developed. In this paper, we derive a more fundamental and physically-based analytical radiative transfer model that yields a closed-form functional R(D) relationship for dry soils. Despite several simplifying assumptions, the proposed model shows good agreement with measured spectral reflectance (350-2500 nm) data of six soils covering a broad range of textures, colors, and mineralogies. The proposed S-shaped R(D) function resembles cumulative particle and pore size distributions as well as the soil water characteristic function. These analogies may potentially lead to new avenues for developing novel physical models for extracting important soil properties from remotely sensed reflectance data.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , ,