Article ID Journal Published Year Pages File Type
8896563 Journal of Algebra 2017 27 Pages PDF
Abstract
In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T2⁎-equivalence, generating varieties of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety has polynomial growth. We classify the subvarieties of such varieties by giving a complete list of generating finite dimensional ⁎-algebras. Along the way we classify all minimal varieties of polynomial growth and surprisingly we show that their number is finite for any given growth. Finally we describe the ⁎-algebras whose ⁎-codimensions are bounded by a linear function.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,