Article ID Journal Published Year Pages File Type
8897260 Journal of Pure and Applied Algebra 2019 24 Pages PDF
Abstract
Over a field of prime characteristic p>2, we prove that the cohomology rings of some pointed Hopf algebras of dimension p3 are finitely generated. These are Hopf algebras arising in the ongoing classification of finite dimensional pointed Hopf algebras in positive characteristic. They include bosonizations of Nichols algebras of Jordan type in a general setting. When p=3, we also consider their Hopf algebra liftings, that is Hopf algebras whose associated graded algebra with respect to the coradical filtration is given by such a bosonization. Our proofs are based on an algebra filtration and a lemma of Friedlander and Suslin, drawing on both twisted tensor product resolutions and Anick resolutions to locate the needed permanent cocycles in May spectral sequences.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,