Article ID Journal Published Year Pages File Type
8897261 Journal of Pure and Applied Algebra 2019 9 Pages PDF
Abstract
Artin-Tits groups act on a certain delta-hyperbolic complex, called the “additional length complex”. For an element of the group, acting loxodromically on this complex is a property analogous to the property of being pseudo-Anosov for elements of mapping class groups. By analogy with a well-known conjecture about mapping class groups, we conjecture that “most” elements of Artin-Tits groups act loxodromically. More precisely, in the Cayley graph of a subgroup G of an Artin-Tits group, the proportion of loxodromically acting elements in a ball of large radius should tend to one as the radius tends to infinity. In this paper, we give a condition guaranteeing that this proportion stays away from zero. This condition is satisfied e.g. for Artin-Tits groups of spherical type, their pure subgroups and some of their commutator subgroups.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,