Article ID Journal Published Year Pages File Type
8897505 Journal of Pure and Applied Algebra 2018 4 Pages PDF
Abstract
Let R be an associative ring with unit and denote by K(R-Proj) the homotopy category of complexes of projective left R-modules. Neeman proved the theorem that K(R-Proj) is ℵ1-compactly generated, with the category K+(R-proj) of left bounded complexes of finitely generated projective R-modules providing an essentially small class of such generators. Another proof of Neeman's theorem is explained, using recent ideas of Christensen and Holm, and Emmanouil. The strategy of the proof is to show that every complex in K(R-Proj) vanishes in the Bousfield localization K(R-Flat)/〈K+(R-proj)〉.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,