Article ID Journal Published Year Pages File Type
8897564 Journal of Pure and Applied Algebra 2018 20 Pages PDF
Abstract
We give an additional axiom (the Algebra Axiom), such that the existence of a Dietz closure satisfying this axiom is equivalent to the existence of a big Cohen-Macaulay algebra. We prove that many closure operations satisfy the Algebra Axiom, whether or not they are Dietz closures. We discuss the smallest big Cohen-Macaulay algebra closure on a given ring, and show that every Dietz closure satisfying the Algebra Axiom is contained in a big Cohen-Macaulay algebra closure. This leads to proofs that in rings of characteristic p>0, every Dietz closure satisfying the Algebra Axiom is contained in tight closure, and there exist Dietz closures that do not satisfy the Algebra Axiom.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,