Article ID Journal Published Year Pages File Type
8897591 Journal of Pure and Applied Algebra 2018 20 Pages PDF
Abstract
In this paper, we obtain a non-abelian analogue of Lubkin's embedding theorem for abelian categories. Our theorem faithfully embeds any small regular Mal'tsev category C in an n-th power of a particular locally finitely presentable regular Mal'tsev category. The embedding preserves and reflects finite limits, isomorphisms and regular epimorphisms, as in the case of Barr's embedding theorem for regular categories. Furthermore, we show that we can take n to be the (cardinal) number of subobjects of the terminal object in C.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,