Article ID Journal Published Year Pages File Type
8898778 Journal of Differential Equations 2018 30 Pages PDF
Abstract
In this paper, we establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for Hessian quotient equations with prescribed asymptotic behavior at infinity. This extends the previous related results on the Monge-Ampère equations and on the Hessian equations, and rearranges them in a systematic way. Based on the Perron's method, the main ingredient of this paper is to construct some appropriate subsolutions of the Hessian quotient equation, which is realized by introducing some new quantities about the elementary symmetric polynomials and using them to analyze the corresponding ordinary differential equation related to the generalized radially symmetric subsolutions of the original equation.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,