Article ID Journal Published Year Pages File Type
8898824 Journal of Differential Equations 2018 54 Pages PDF
Abstract
We find a complete characterization for sets of uniformly strongly elliptic and isotropic conductivities with stable recovery in the L2 norm when the data of the Calderón Inverse Conductivity Problem is obtained in the boundary of a disk and the conductivities are constant in a neighborhood of its boundary. To obtain this result, we present minimal a priori assumptions which turn out to be sufficient for sets of conductivities to have stable recovery in a bounded and rough domain. The condition is presented in terms of the integral moduli of continuity of the coefficients involved and their ellipticity bound as conjectured by Alessandrini in his 2007 paper, giving explicit quantitative control for every pair of conductivities.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,