Article ID Journal Published Year Pages File Type
8899332 Journal of Mathematical Analysis and Applications 2018 17 Pages PDF
Abstract
In 1914, Hardy proved that infinitely many non-trivial zeros of the Riemann zeta function lie on the critical line using the transformation formula of the Jacobi theta function. Recently the first author obtained an integral representation involving the Riemann Ξ-function and the confluent hypergeometric function linked to the general theta transformation. Using this result, we show that a series consisting of bounded vertical shifts of a product of the Riemann Ξ-function and the real part of a confluent hypergeometric function has infinitely many zeros on the critical line, thereby generalizing a previous result due to the first and the last authors along with Roy and Robles. The latter itself is a generalization of Hardy's theorem.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,