Article ID Journal Published Year Pages File Type
8899670 Journal of Mathematical Analysis and Applications 2018 21 Pages PDF
Abstract
In this paper we study integral estimates of derivatives of conformal mappings φ:D→Ω of the unit disc D⊂C onto bounded domains Ω that satisfy the Ahlfors condition. These integral estimates lead to estimates of constants in Sobolev-Poincaré inequalities, and by the Rayleigh quotient we obtain spectral estimates of the Neumann-Laplace operator in non-Lipschitz domains (quasidiscs) in terms of the (quasi)conformal geometry of the domains. Specifically, the lower estimates of the first non-trivial eigenvalues of the Neumann-Laplace operator in some fractal type domains (snowflakes) were obtained.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,