Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8900965 | Applied Mathematics and Computation | 2018 | 8 Pages |
Abstract
A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S, and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so far.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Antonio González, Carmen Hernando, Mercè Mora,