Article ID Journal Published Year Pages File Type
8901073 Applied Mathematics and Computation 2018 17 Pages PDF
Abstract
The iterative algorithm of a class of generalized coupled Sylvester-transpose matrix equations is presented. We prove that if the system is consistent, a solution can be obtained within finite iterative steps in the absence of round-off errors for any initial matrices; if the system is inconsistent, the least squares solution can be obtained within finite iterative steps in the absence of round-off errors. Furthermore, we provide a method for choosing the initial matrices to obtain the least Frobenius norm least squares solution of the problem. Finally, numerical examples are presented to demonstrate that the algorithm is efficient.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,