Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8901480 | Applied Mathematics and Computation | 2018 | 12 Pages |
Abstract
This paper investigates the problem of reachable set estimation for a class of uncertain singular systems with time-varying delays from a new point of view. Our consideration is centered on the design of a proportional-derivative state feedback controller (PDSFC) such that the considered singular system is robustly normalizable and all the states of the closed-loop system can be contained by a bounded set under zero initial conditions. First, a nominal singular time-delay system is considered and sufficient conditions are obtained in terms of matrix inequalities for the existence of a PDSFC and an ellipsoid. In this case, the considered system is guaranteed to be normalizable and the reachable set of the closed-loop systems is contained by the ellipsoid. Then, the result is extended to the case of singular time-delay systems with polytopic uncertainties and relaxed conditions are derived by introducing some weighting matrix variables. Furthermore, based on the obtained results, the reachable set of the considered closed-loop singular system can be contained in a prescribed ellipsoid. Finally, the effectiveness of our results are demonstrated by two numerical examples.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Guobao Liu, Shengyuan Xu, Yunliang Wei, Zhidong Qi, Zhengqiang Zhang,