Article ID Journal Published Year Pages File Type
8902013 Journal of Computational and Applied Mathematics 2018 25 Pages PDF
Abstract
We are interested in acoustic wave propagation in time harmonic regime in a two-dimensional medium which is a local perturbation of an infinite isotropic or anisotropic homogeneous medium. We investigate the question of finding artificial boundary conditions to reduce the numerical computations to a neighborhood of this perturbation. Our objective is to derive a method which can extend to the anisotropic elastic problem for which classical approaches fail. The idea consists in coupling several semi-analytical representations of the solution in halfspaces surrounding the defect with a Finite Element computation of the solution around the defect. As representations of the same function, they have to match in the infinite intersections of the halfspaces. It leads to a formulation which couples, via integral operators, the solution in a bounded domain including the defect and its traces on the edge of the halfspaces. A stability property is shown for this new formulation.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,