Article ID Journal Published Year Pages File Type
8903000 Discrete Mathematics 2018 11 Pages PDF
Abstract
Switching is a local transformation of a combinatorial structure that does not alter the main parameters. Switching of binary covering codes is studied here. In particular, the well-known transformation of error-correcting codes by adding a parity-check bit and deleting one coordinate is applied to covering codes. Such a transformation is termed a semiflip, and finite products of semiflips are semiautomorphisms. It is shown that for each code length n≥3, the semiautomorphisms are exactly the bijections that preserve the set of r-balls for each radius r. Switching of optimal codes of size at most 7 and of codes attaining K(8,1)=32 is further investigated, and semiautomorphism classes of these codes are found. The paper ends with an application of semiautomorphisms to the theory of normality of covering codes.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,