Article ID Journal Published Year Pages File Type
8903121 Discrete Mathematics 2018 10 Pages PDF
Abstract
A packingk-coloring of a graph G is a partition of V(G) into sets V1,…,Vk such that for each 1≤i≤k the distance between any two distinct x,y∈Vi is at least i+1. The packing chromatic number, χp(G), of a graph G is the minimum k such that G has a packing k-coloring. Sloper showed that there are 4-regular graphs with arbitrarily large packing chromatic number. The question whether the packing chromatic number of subcubic graphs is bounded appears in several papers. We answer this question in the negative. Moreover, we show that for every fixed k and g≥2k+2, almost every n-vertex cubic graph of girth at least g has the packing chromatic number greater than k.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,