Article ID Journal Published Year Pages File Type
8903226 Discrete Mathematics 2017 11 Pages PDF
Abstract
Merlini and Sprugnoli (2017) give both an algebraic and a combinatorial proof for an identity proposed by Louis Shapiro by using Riordan arrays and a particular model of lattice paths. In this paper, we revisit the identity and emphasize the use of colored partial Motzkin paths as appropriate tool. By using colored Motzkin paths with weight defined according to the height of its last point, we can generalize the identity in several ways. These identities allow us to move from Fibonacci polynomials, Lucas polynomials, and Chebyshev polynomials, to the polynomials of the form (z+b)n.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,